'

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 7, JULY 1996

1109

Polarizabilities of an Annular Cut in
the Wall of an Arbitrary Thickness

Sergey S. Kurennoy

Abstract— The knowledge of electric and magnetic polariz-
abilities of an aperture is often required in problems related to
waveguide coupling and diffraction of EM waves by apertures.
The beam coupling impedances due to a small discontinuity on
the chamber wall of an accelerator can also be expressed in terms
of the polarizabilities of the discontinuity. The polarizabilities
are geometrical factors which can be found by solving a static
(electric or magnetic) problem. However, they are known in an
explicit analytical form only for a few simple-shaped disconti-
nuities, such as an elliptic hole in a thin wall. In the present
paper the polarizabilities of a ring-shaped cut in the wall of an
arbitrary thickness are studied using a combination of analytical,
variational and numerical methods. The results are applied to
estimate the coupling impedances of button-type beam position
monitors.

1. INTRODUCTION

N THE THEORY of diffraction and penetration of EM

waves through apertures in conducting walls many impor-
tant quantities can be related to the aperture polarizabilities
[1]-[3]. The coupling impedances of a small discontinuity
on the wall of the vacuum chamber of an accelerator have
also been calculated in terms of the polarizabilities of the
discontinuity [4]. The basic idea of the approach used is due
to the Bethe theory of diffraction by small holes [1], which
shows that the fields scattered by a hole can be approximated
by those produced by effective dipoles which are induced on
the hole by an incident (beam or incident-wave) field. The
magnitudes of the effective electric P and magnetic M dipoles
are expressed through the incident fields E*, H? at the hole
location without hole [1], [2]

xeo BN
p, = - X%
2
H}
M, = ¢2 €))

where 'y is the electric polarizability and ¢ is the magnetic
susceptibility of the hole, © is the normal vector to the hole
plane, and 7 is the tangential one. In general, ¢ is a two-
dimensional (2-D) symmetric tensor, but we restrict ourselves
here by only axisymmetric holes.

When the wavelength of an incident field is large compared
to a typical size of the aperture, the aperture is considered to
be small and its polarizabilities can be found by solving an
electrostatic or magnetostatic problem [2]. The solutions are
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known in an explicit analytical form for a few simple cases, see
review [3]. For a circular hole of radius b in a zero-thickness
wall 1 = 8b%/3 and x = 4b%/3 [1]. Analytical results for
elliptic holes in a thin wall are also available [2]. In the case
of a thick wall the polarizabilities have been studied using a
variational technique for circular holes [5] and for elliptic holes
[6]. Some approximate formulas for slots are compiled in [7].

In the present paper, we consider an annular cut in the
perfectly conducting planar wall of an arbitrary thickness. In
other words, the geometry under investigation is a circular hole
in the wall with a concentric disk placed in it. This aperture can
serve as a model of a coax attached to the waveguide, when the
wall thickness is large. In the case of a thin or finite-thickness
wall it is an approximation of an electrode of the button-
type beam position monitors (BPM’s). For this geometry, an
integral equation for electric and magnetic potential is derived
in Section II. The magnetic problem is studied in Section III.
The integral equation is first solved analytically for a narrow
cut in a thin wall, and then studied by variational methods
in other cases. For the electric problem, analytical estimates
are given and then a numerical approach is used in Section
IV. In Section V, the results are applied to estimate the beam
coupling impedances of BPM’s.

II. GENERAL ANALYSIS

A. Problem Symmetry

When the wavelength is large compared to the hole size,
the polarizabilities can be obtained by solving the following
problem: To find the field distribution produced by the aperture
(hole) in a metal planar wall when it is illuminated from one
side by a homogeneous static (normal electric or tangential
magnetic) field. Suppose the midplane of a conducting wall
of thickness ¢ is at z = 0 so that the wall surfaces are in
planes z = £¢/2. The center of a hole in the wall coincides
with the origin of the plane coordinates (u, v). Let the hole '
be illuminated by a homogeneous electric field Ejy from
z > 0 side, directed along the normal —2 to the wall. In
the magnetic case, a homogeneous tangential magnetic field
Hy is assumed to be directed along 4. Following [5], [8] we
split the problem into symmetric and antisymmetric parts, with
respect to the corresponding potential. For this purpose, we
decompose the far field as £y/2 + Ey/2 = Ey for = > 0,
and as Ey/2 — Fg/2 = 0 for z < 0, and consider two
separate problems: i) the wall with the aperture is immersed
into homogeneous field Ey/2—the antisymmetric problem for
the electrostatic potential with respect to reflection 2 — —z;
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and ii) the aperture in the wall is 1lluminated by the field
directed to the wall from both sides, Ey/2 for z > 0 and
—FEy/2 for z < 0, in which case the potential is symmetric.
Solving separately symmetric and antisymmetric parts of
the electric problem yields two polarizabilities xs and x,.
They, in turn, give us the inside electric polarizability x,, =
Xs + Xa. which defines the effective electric dipole for the
illuminated side of the wall, z > #/2, and the outside one,

Xout = Xs — Xa» for the shadow side of the wall, z < —t/2.
Likewise, the magnetic polarizabilities are 1,,, = 9, + 1, and
Your = Y5 — 1q. For a zero-thickness plane, obviously, the

antisymmeltric problem is trivial (the field is Fo/2 or Hy/2
everywhere), so that x, and 9, are both zero.

B. Integral Equations

Let us start from the magnetic problem for a zero-thickness
wall, t = 0. As mentioned before, the antisymmetric potential
is zero everywhere in this case. The symmetric problem
can be reduced to the integral equation [8] for the function
G(r')y = 2H.(r, 0)/Hy

/ 4’ G VK (F7!) = u 2)
h

where 7 = (u. v), the integration runs over the aperture, and
kernel K (7, 7') = (2r|F — #'|)7! is symmetric. If (2) is
solved, the magnetic susceptibility is [8]

'l/'u=/ AF"uG(7"). 3)
h
For an axisymmetric aperture, one can simplify (2) using

uw =1 cos @, substituting G(¥) = g(r) cos v, and intergating
over the polarangle ¢’. It vields

/ dr'r’ g(r' YK, (r,r') = v “)
(7]
with the following kernel

Koz, y) = /0. do Ji(ox)Ji(oy)

r 31, x?
=== 507 (5 31% )
r ey )

where J,,(x) is the nth order Bessel function of the first kind,
and o F7 is the Gauss hypergeometric function. This kernel
has a lu-singularity at x = y

Sry <ln
m(r +y)3

The magnetic susceptibility in this case is

=7 /W dri? g(r). (7

Tty
|z — yl

K (z, y) >~ —|—2]112~2>. (6)

In (4) and (7) symbol [h] denotes the interval of the radius-
vector variation: [h] = [0, b] for a circular hole of radius b,
and [h] = [a, b] for an annular cut with inner radius « and
outer radius b.
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For the case of finite thickness £ > 0, one should consider
both the symmetric and antisymmetric problems. In this case
an integral equation is derived for the function G(7) =
2H.(7, t/2)/Hp. For an axisymmetric aperture, the integral
equation of the symmetric problem is

/ dr'r' g(r) (K (r,r") + K (e = o (8)
(7]

where the thickness-dependent addition K, to the kernel is

the annular gap with radii @ and b. it has the form

At
0 tanh ——

Kilrr') = 3 Fu(r)Fo(r!) ——2- (9)

Tt )

where A, are subsequent positive roots of

T (Ana)Y{(Anb) — Y{(Ana) J[(Anb) = 0. (10)

Y1(z) is the Bessel function of the second kind, and the
expansion functions F, are

Ji(Ana)

Fo.(ry=Cy | i(Anr) — V1Dt )Y’()\ ik

an
These functions are normalized to satisfy the condition
fab rF2(r) = 1, which defines

Dr/()‘nb ] [1 ” (Anb)_z]

’n \/_ {

_[ y{()\na)] H[

Likewise, for the antisymmetric problem the thickness-

dependent part K>, of the kernel replaces K, in the integral

(8), and it is given by (9) with replacement tanh — coth. We

do not provide a detailed derivation of the integral equations

above since it is quite analogous to that in [5] for a circular

hole. The only difference is in the form of functions F,(r)

and A, for the thickness-dependent part.

In a similar way, a solution f(r) of the electrostatic problem

for a thin wall satisfies the integral equation

— (Ana) I}V (12)

/ dr'r f(r' YKo (r,r') = 1 (13)
[h]
with a more singular {O[(x — y)~?]} kernel
Kooy = [ dooTonthioy). (19
Jo

The thickness-dependent parts of the kernel have the form
similar to (9). The electric polarizability of the axisymmetric
hole is

x =27 / drrf(r). (15)
J[R]

A solution g{r) of the integral (4) or (8) must have the
correct singular behavior near the metal edge. For a zero-
thickness wall, the singularity is g(r) o A~1/2 when distance
from the edge A =b—r - 0or A =r —a — 0. For the
electric problem (13), the function f(r), which is proportional
to the electric potential. must behave as /A near the edge
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to provide for the correct singularity A~1/2 of the electric
field. In the case of a circular hole of radius & the exact
solutions of (4) and (13) are known [1]. They are g(r) =
4r/(7V/b% —r?) and f(r) = 2vb? —r2/xm, substituting of
which in (7) and (15) gives the polarizabilities of a circular
hole cited in Introduction. For a thick wall, the near-edge
behavior is g(r) o« A™Y/3 and f(r) o« A?/3, assuming 90°
edge.

[II. MAGNETIC PROBLEM

A. Narrow Cut in Thin Wall: Analytical Solution

Suppose the width w = b — a of the gap is small, w < b.
Introducing dimensionless variables x = r'/b and y = r/b,
we are looking for a solution of (4) in the form g(z) =
C(z)/+/(1 — z)(x — p), where p = a/b, and C(z) is a regular
function in the interval [p, 1]. For anarrow gap 6 = 1—p < 1,
and one can expand C(z) as C(z) = C' 4 O(4). Substituting
this into (4) and keeping only the singular part (6) of the kernel
[the rest would give corrections O($) to the RHS] leads to

(16)

where we neglected terms O(6 ln é) in the RHS. Replacing
variables z = 1 — ud, y = 1 — vd, and using the identity
fol du In ju — v|[u(l — u)]"Y/? = =27 In 2, from (16) we
get C = [In(32/6) — 2]7!. Then from (7) the magnetic
polarizability of a narrow (w = b — @ < b) annular cut in
a thin plate is
22
_7b a_ an

Y= "3
m 32 _,
w

It is interesting to compare (17) with the estimate [7]
obtained by approximating the annular cut with an octagon
and using the magnetic susceptibilities for narrow slots

3
Vo = g‘ (%)4;—2:12—7

(18)

w 3

While the behavior is similar, this estimate is a few times
smaller than (17), see Fig. 1. Even for a more extreme
model—two long slots of length 2b and width w, parallel to
the magnetic field—the polarizability

4 b3
Ym=3 6 7 (19)
In — - £
w 3

is still smaller than (17), see Fig. 1.

As seen from Fig. 1, the polarizability (17) becomes close to
that of a circular hole for relatively narrow gaps, w/b > 0.1.
The physical reason for this surprising result is that a tangential
magnetic field very easily and deeply penetrates even through
a very narrow annular gap in the thin wall. This distortion
of the incident field creates a large effective magnetic dipole
which is comparable to that due to the open hole with the

1111

w/b

Fig. 1. Magnetic polarizability (in units of %) of a narrow annular cut versus
its relative width w/b: solid line for (17), long-dashed line for octagon model
(18), and short-dashed line for slot model (19). The dotted line shows the
polarizability of the circular hole %/b® = 8/3.

same radius. As we shall see in Section IV, this is not the
case in the electric problem. To find the applicability range
for the analytical result of (17) and include thickness effects,
we proceed below with a variational study of (4).

B. Wide Cut: Variational Approach

An elegant variational technique for polarizabilities has
been developed in [5]. Multiplying (4) or (8) by rg(r) and
integrating over r, we convert it to the following variational
form for the magnetic polarizability 2

| ade [ vava@K @ v
72 P f‘l 5

{ /p 22 dz g(m)]

where kernel K(z, y) = Ky (2, y) for t = 0 or K(z, y) =
Km(z, y) + K2 (z, y) for thick wall. A solution g(z) of
(4) or (8) minimizes the RHS of (20). We are looking for a
solution in the form of a series

o0

g(z) = Z ngn(T)

n=0

(20)

21

with unknown coefficients c,. The choice of functions gn(x)
is defined by the near-edge behavior of the solution. For the
zero-thickness case we choose

go(w) = [(1 = 2)(@ — p)] V2,

or(#) =Ths (2””;%1) for k>1 ()

where 1), (z) are Chebyshev’s polynomials of the first kind.
For a thick wall

go(x) =[(1 = z)(z = p)] /%,

—p—1
gx(x) :C’;/_Gl (.2_35_1__/)7) for k>1 (23)

where Cp/ %(x) are Gegenbauer’s polynomials. This choice of
the polynomials is related to their orthogonality to the singular
part go(z) of the solution.



1112

0.2 0.4 0.6 0.8 1

w/b

Fig. 2. Instde magnetic polarnizability (m umits of b°) of an annular cut
versus its relative width w /b for thin (dashed) and thick (solid) wall. Three
dash-dotted curves are for fixed ratio ¢ / w = 0.5: 1; 2 (from top to bottom).
The dotted line corresponds to the circular hole m a thin wall.

Fig. 3. Inside (solid) and outside (dotted) magnetic polarizability (in units
of b%) of an annular cut versus wall thickness for different relative widths
w/b = 0.1. 0 5. 0.9 (from bottom to top)

Denoting d,, = f: dz z%g,(r) and a, = c,d,, we define
the matrix

1 1
/ .Ld.l/ vy gr(2)K (2, ¥)gn(y)
_Jp e
kn — dkd

K, (24)
and convert (20) into the following form
Z Ay [{kn Gn
b3 n
=k (25)

C ()

Following [5]. one can prove that minimizing the RHS of
(25) yields ¢ = 76 3", (K ~')ipn, where matrix K ! is the
inverse of the matrix K defined by (24). The further procedure
is straightforward: nth iteration (n = 0, 1, 2, - -) corresponds
to the matrix (24) truncated to the size (n + 1) x (n +1). In
the zeroth iteration the truncated matrix is merely a number
Koo. Integrations and matrix inversions have been carried out
using Mathematica [9].

Calculations show that for zero wall thickness only even
terms of the series (21) contribute, ie.. ¢; = ¢c3 = --- = 0,
and, effectively, one can use g = gg + 211 + 4T3 + -+ -, and
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squeeze matrix K removing odd lines and rows. The results
for ¥ (¥ = Yn = Your for ¢ = 0) versus the cut width
are shown in Fig. 2 (dashed line). One can see that the zeroth
iteration, as well as the analytical solution (17), works well for
narrow gaps, w/b < 0.15. The process practically converges
in three iterations (effective 0, 1, 2) for the whole range of the
cut width 0 < w/b < 1.

For the case of a finite wall thickness, it is instructive to
rewrite the variational (20) as

v |;/plr2d.rg(f):|

2

— = 26
0 Dig z0)
where the functional D]g] in the denominator is
1 1
Dlg] = / x de / ydy g(z)Km(x, y)g(y)
Jp P
Ant
oo 1 2 tanh ——;——
+ xdx g(x)F,(z R (27
>\ etamr@] )

For the antisymmetric problem, tanh in (27) is replaced by
coth. From (26), (27) one can easily see that due to the
presence of the positive second term in D[g] the magnetic
polarizability for any ¢ > 0 is reduced compared to that for
zero-thickness case.

An asymptotic of ¢ for a narrow gap, 6 = w/b < 1,
in a thick wall can be obtained easily using properties of
eigenvalues: Apb — mw(n—1)/6 forn > 2, and A1b ~ 1+6/2
when 6 — 0. (In the opposite extreme, 6 — 1, roots A\,b
tend to the roots of Ji{x) from below.) When the wall is
thick enough, i.e., ¢ > 2b, one can neglect all terms except
n = 1 in the sum 1in (27). From normalization condition for
F, follows Fj(z) ~ 6~'/2, Keeping only singular term go(z)
in series (21), and neglecting the term with K, in Dl[g] since
it is small compared to [ [ g{x)Fy(z)]? x §1/3, we get after
some algebra

s >ty = w6 = whw. (28)

It gives asymptotic ,,, = 27b*w for a narrow annular gap in
the thick wall. Comparison to the results of direct variational
calculations for the thick wall in Fig. 2 (solid line) shows that
this asymptotic works only for very small w/b, giving the
initial slope of the curve in Fig. 2.

The variational calculations for the thick wall are similar
to those for the zero-thickness case, except that one has to
truncate the series in n for the thickness-dependent part in (27).
We have kept up to 6 terms in this series, and convergence
was fast enough. requiring only up to 3 to 4 iterations. Again,
for narrow gaps the process practically converges after the
first iteration. Fig. 3 shows the inside and outside magnetic
polarizabilities versus the wall thickness for different values
of the gap width. One can see that “thick-wall”” asymptotics are
reached approximately at ¢/b = 2. The outside polarizabilities
decrease exponentially with thickness increase.

Fig. 2 shows the inside magnetic polarizability as a function
of the gap width for different wall thicknesses. One should
mention that in the limit w/b — 1 our results coincide with
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those obtained for a circular hole [5], e.g., ¥;n(t — o0) =
0. 714 (t = 0).

IV. ELECTRIC PROBLEM

A. Narrow Cut: Analytical Estimates

For a narrow annular cut w < b, the electric polarizability
can be approximated by that of a narrow (yet bent) slot of
width w and length 7(b + a) > w. The approximation is
relevant as long as the width is small compared to the radius
of curvature, and it gives x ~ ¥7(h+ a), where % denotes the
electric polarizability per unit length of the slot. The value
of ¥ can be obtained using conformal mapping for a 2-D
electrostatic problem, and for two extreme cases the results
are quite simple: ¥ = ww?/8 for zero wall thickness, and
¥ = w? /m for a thick wall, ¢ >» w, see [7] and references
therein. In this way, we have two simple analytical estimates
for the electric polarizability of a narrow annular cut: for a
thin wall

72w?(b + a)

XX 29

and for a thick wall

Xin = w2 (b + a). (30)

Obviously, for narrow gaps the electric polarizability is
small compared to the magnetic one. The reason, from physical
point of view, is that the normal electric field does not
penetrate far enough through the narrow gap, unlike the
tangential magnetic field on the parts of the annular cut which
are parallel to its direction.

The outside electric polarizability of the gap in a thick wall
is exponentially small. Taking a characteristic depth w/7 of
the electric field penetration inside the gap and using (30)
leads to the estimate

t
Xout w2(b + a) exp (—%) 3D

B. Wide Cur: Numerical Approach

Both the electro- and magnetostatic problems under con-
sideration can be solved numerically. With boundary con-
ditions which ensure a given homogeneous field far from
the aperture plane, a static electric or magnetic potential
could be computed using standard codes. Unfortunately, for
the magnetic problem, as well as for an arbitrary-shaped
aperture, this approach requires three-dimensional (3-D) codes
and cumbersome computations. However, the electric problem
is effectively a 2-D one due to its axial symmetry. On the
other hand, an application of the variational technique to the
electrostatic problem under consideration is complicated since
its zero-thickness kernel (14) is singular: direct numerical
computations of variational integrals would be involved unless
the integration is performed analytically (which is also difficult
in this case). That is why we choose the numerical approach
applying the POISSON code [10].

For a numerical solution, we consider a conducting circular
cylinder with the axis at u = v = 0, the radius 5b, where b is
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Fig. 4. Inside electric polarizability (in units of b%) of an annular cut versus
its relative width w/b: analytical estimates (29) for a thin wall (short-dashed)
and (30) for a thick wall (long-dashed) and corresponding numerical results
{thick dots). The dotted line is for the circular hole in a thin wall, x /5% = 4/3.

the aperture outer radius, and its base on the aperture plane.
The cylinder “lid,” which is at the distance about 105 from the
aperture plane, is an equipotental surface, with its potential
chosen to provide unit electric field near the surface. The
potential of the aperture plane is fixed to be zero, and boundary
conditions d¢/dn = 0 on the side wall are imposed to force
electric-field lines to be parallel to it. Imposing Neumann’s
boundary condition d¢/dn = 0 inside the aperture, at z = 0,
give us the symmetric problem for the potential ¢. Likewise,
Dirichlet’s boundary condition ¢ = 0 in the aperture leads to
the antisymmetric problem. Exploiting the axial symmetry of
the problem, we use 2-D electrostatic code POISSON to solve
for the potential ¢(r, z). Then integrating r$(r, z = ¢/2) from
a to b gives us the electric polarizability (15).

The results are shown in Fig. 4. One can see that analytical
estimates (29) and (30) work amazingly well even for very
wide gaps. We intentionly did not interpolate the numerical
dots in Fig. 4, otherwise it would be difficult to distinguish the
numerical curves from those given by formulas (29), (30); they
overlap except in the region w/b > 0.85. Numerical results
for finite wall thickness ¢/w = 1 and even ¢/w = 0.5 are very
close to those for a very thick wall (the lower curve in Fig. 4).

Estimate (31) of the outside electric polarizability coincides
with numerical results within 10% for w/b < 0.5, and much
better for narrow gaps. The thickness dependences of x;,, and
Xout for a fixed width are similar to those shown in Fig. 3 for
the magnetic case. However, the thickness effect on the inside
electric polarizability is weaker, as one can see from Fig. 4,
and its asymptotic value is reached for thinner walls, at ¢ > w.

V. BEAM COUPLING IMPEDANCES

The beam-chamber coupling impedances can be obtained
using formulas from [4] and polarizabilities found in Sections
III and IV. An annular cut of radius b and width w on the wall
of a circular pipe of radius r > b produces the longitudinal
impedance

_ iZOw("/)zn - in)
8n2cr?

where (1., — Xin)/b° is plotted in Fig. 5. As for other cross

sections of the vacuum chamber, the transverse impedance,

Z(w) = (32)
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Fig. 5. Difference of inside polarizabilities (in units of %) of an annular
cut versus its relative width w/b for different thicknesses of the wall
t = 0; w/2; w; 2w, and t 3> w (from top to bottom). The dotted line
corresponds to the circular hole in a thin wall, (¢ — x)/b% = 4/3.

and the real part of the longitudinal one, see [11] and refer-
ences therein.

For the case of a narrow annular gap, w < b, on the thin
wall, the magnetic polarizability dominates, according to (17)
and (29), and (32) takes the following form

’iZ()(u'b3

5 .
&cr? <1n 3—b - 2>
W

Z(w) ~ — 33)

Note that the impedance (33) of a narrow cut with w/b > 0.05
in a thin wall is larger than (but less than twice) that of a
circular hole with radius b, and tends to the last one when
w — b. The analytical expression (33) can be used as an upper
estimate for the impedance of a button-type BPM. However,
the effect of the wall thickness can be important, cf., Fig. 5,
so more accurate results are obtained by making use of (32)
and polarizabilities from Fig. 5.

As an example, we estimate the broad-band impedance for
BPM’s of the PEP-II B-factory at SLAC and compare it with
3-D numerical simulations [12]. The BPM has 4 buitons of
inner radius ¢ = 7.5 mm, gap width w = 1 mm, at the
distance r = 30 mm from the chamber axis. In fact, the PEP-II
chamber has an octagonal cross section, but we approximate it
by a circular pipe with radius 30 mm. While the wall thickness
is not specified in [12], it is usually a few times larger than the
gap width. The calculation according to (33) would give the
inductance L = 0.12 nH per BPM (Z = —iwLl) in a thin-wall
approximation. The account of the wall thickness reduces this
upper estimate, cf., Fig. 5: If the thickness is taken ¢t = 2w = 2
mim, the result is £ = 0.06 nH per BPM, and L = 0.032 nH
for a very thick wall, ¢ > w. The numerical result [12] is
L = 0.04 nH per BPM, in a good agreement with our estimate
for the case of a finite wall thickness.

VI. CONCLUSION

The polarizabilities of an annular cut in a wall of any
thickness are studied. The magnetic polarizability is calculated
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using the analytical and variational methods. To calculate
the electric polarizability we applied the direct numerical
approach. Combining different methods allows us to find the
polarizabilities for different widths of the cut and to take into
account the effects due to the wall thickness. The results
can be used for many applications of the aperture theory.
As an example, the estimate for the coupling impedance of
button-type BPM’s is obtained.
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